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Abstract
Key message  Integration of multi-omics data improved prediction accuracies of oat agronomic and seed nutritional 
traits in multi-environment trials and distantly related populations in addition to the single-environment prediction.
Abstract Multi-omics prediction has been shown to be superior to genomic prediction with genome-wide DNA-based genetic 
markers (G) for predicting phenotypes. However, most of the existing studies were based on historical datasets from one 
environment; therefore, they were unable to evaluate the efficiency of multi-omics prediction in multi-environment trials 
and distantly related populations. To fill those gaps, we designed a systematic experiment to collect omics data and evaluate 
17 traits in two oat breeding populations planted in single and multiple environments. In the single-environment trial, tran-
scriptomic BLUP (T), metabolomic BLUP (M), G + T, G + M, and G + T + M models showed greater prediction accuracy 
than GBLUP for 5, 10, 11, 17, and 17 traits, respectively, and metabolites generally performed better than transcripts when 
combined with SNPs. In the multi-environment trial, multi-trait models with omics data outperformed both counterpart 
multi-trait GBLUP models and single-environment omics models, and the highest prediction accuracy was achieved when 
modeling genetic covariance as an unstructured covariance model. We also demonstrated that omics data can be used to 
prioritize loci from one population with omics data to improve genomic prediction in a distantly related population using a 
two-kernel linear model that accommodated both likely casual loci with large-effect and loci that explain little or no pheno-
typic variance. We propose that the two-kernel linear model is superior to most genomic prediction models that assume each 
variant is equally likely to affect the trait and can be used to improve prediction accuracy for any trait with prior knowledge 
of genetic architecture.
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Introduction

Oat (Avena sativa L.) ranks sixth in world cereal produc-
tion and has increasingly been consumed as a human food 
(USDA 2019). Oat has a high content of health-promoting 
compounds such as unsaturated fatty acids, dietary fiber, anti-
oxidants, and vitamins, which makes it an interesting target 
for metabolomics studies from a human health and nutrition 
perspective (IMARC Group 2019). In addition, high-density 
genetic markers have been developed in oat (Bekele et al. 
2018), a draft genome sequence has been released (PepsiCo 
2020) and a high-quality and comprehensive seed transcrip-
tome has been characterized (Hu et al. 2020). Furthermore, 
recent advances in high-throughput sequencing and metab-
olite profiling technologies enable quantification of gene 
expression and metabolite abundance for hundreds of sam-
ples with high precision and reasonable cost (Alseekh and 
Fernie 2018; Moll et al. 2014). All these advances in technol-
ogy provides an opportunity to integrate different omics data 
and improve predictions for phenotypes of interest.

Several multi-omics prediction studies have been reported in 
cereal and animal species (Guo et al. 2016; Riedelsheimer et al. 
2012; Schrag et al. 2018; Wang et al. 2019; Westhues et al. 2017; 
Xu et al. 2017; Xu et al. 2021; Ye et al. 2020; Zhao et al. 2015). 
These studies have shed light on the merits of multi-omics pre-
diction over traditional genomic prediction and discussed useful 
statistical methods for integrating omics data. For instance, Xu 
et al. (2017) and Wang et al. (2019) suggested that best linear 
unbiased prediction was the most efficient method compared 
to other commonly used genomic prediction and non-linear 
machine learning methods. However, most of those studies were 
based on historical datasets with a limited number of metabo-
lite features and each level of omics data was collected from 
different projects. Therefore, they were unable to evaluate the 
efficiency of multi-omics prediction in multi-environment trials 
and genetically distant populations. However, in plant breeding, 
multi-environment trials are important for assessing the perfor-
mance of genotypes across environments and identifying well-
adapted genotypes for a specific region (Burgueño et al. 2012; 
Mathew et al. 2018). In addition, prediction of breeding values 
of distantly related individuals are needed in many and perhaps 
the most promising applications of genomic selection in both 
plant and animal breeding programs (Lorenz and Smith 2015; 
Meuwissen 2009; Moghaddar et al. 2019).

To fill the knowledge gaps of multi-omics prediction in 
plant breeding, we designed a systematic experiment to col-
lect omics data and evaluate eight agronomic and nine fatty 
acid traits (Table S1) in a core set of a worldwide oat collec-
tion (termed Diversity panel) planted in one environment and 
advanced breeding lines adapted to the upper Midwest region 
in the USA (termed Elite panel) planted in three environments. 
Our efforts included (i) comparing the accuracy of multi-omics 

prediction against genomic prediction in a single-environment 
trial; (ii) evaluating the efficiency of multi-omics prediction in 
multi-environment trials; and (iii) exploring the potential of 
using multi-omics data to predict distantly related individuals.

Materials and methods

The plant materials and experimental designs

The Diversity and Elite panels consisted of 378 and 252 
lines (Table S2), respectively. The Diversity panel originally 
included 500 lines described by Carlson et al. (2019) that 
was a core set of worldwide collection of oat germplasm, 
and we further selected for lines with visible anther extru-
sion for the convenience of collecting developing seeds for 
RNA sequencing. The Diversity panel was planted at Ithaca, 
NY, and the Elite panel was planted at Madison, WI, Crook-
ston, MN, and Brookings, SD, respectively. An augmented 
incomplete design was used for both panels. The Diversity 
panel included 18 blocks of 23 plots each, one common 
check across all blocks and six secondary checks replicated 
in three blocks each. The Elite panel included 12 blocks of 
25 plots each, one common check across all blocks and two 
secondary checks replicated in six blocks each.

Phenotype evaluation and analysis

Plant height was evaluated for five randomly selected plants in 
each plot after anthesis. Days to heading was defined by the days 
from seeding to heading in > 50% of total plants. 100 randomly 
selected seeds from each plot were dehulled with a hand dehuller 
for evaluation of hundred kernel weight, hundred hull weight 
and groat percentage. After dehulling, 50 randomly selected 
seeds were delivered to the Proteomics and Metabolomics Facil-
ity at Colorado State University for metabolite analysis, and the 
other 50 seeds were used for measuring seed length, width and 
height with an electronic micrometer. Fatty acids were identified 
and quantified with targeted GC-MS, then normalized to con-
centration (mg/g of oats) against the internal standard (C17:0) 
(details were described in the Supplemental Methods).

Genotype analysis

Genotypic data of the two panels were downloaded from 
T3/oat (https:// triti ceaet oolbox. org/ oat/). SNPs were 
filtered using the following criteria (i) minor allele fre-
quency (MAF) > 2%; (ii) site missingness < 60%; and 
(iii) site heterozygosity < 10%. After initial SNP filtering, 
lines were selected if (i) call rate > 80% and (ii) heterozy-
gosity < 10%. A total of 73,014 markers and 568 lines 
(368 for the diversity panel, 232 for the elite panel, 32 

https://triticeaetoolbox.org/oat/
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in common) met these criteria and were used for further 
analyses. Subsequently, missing genotypes were imputed 
using the linear regression method glmnet described by 
Chan et al. (2016). The imputed genotypic data was used 
for constructing a neighbor-joining tree based on Rogers’ 
distance using the ape package (Paradis et al. 2004), and 
the tree was visualized with the ggtree package (Yu 2020).

Transcript profiling

RNAseq was based on developing seeds at 23 days after 
anthesis (DAA). The 23 DAA was chosen based on our pilot 
study (Hu et al. 2020) that showed 23 DAA had slightly 
higher correlation between transcript and metabolite abun-
dance than other sampled seed developmental time points. 
Seed sample collection, RNA extraction, library construc-
tion procedures were described in details by Hu et  al. 
(2020). Pooled libraries were sequenced using Illumina 
NextSeq500 with a 150 nt single-end run. The RNAseq 
reads quality trimming, transcript abundance quantification, 
and library size normalization followed Hu et al. (2020).

Metabolite profiling and network analysis

Metabolite analysis was based on physiologically mature 
seeds because they have the highest level of health-promoting 
compounds and those compounds are stable at room tem-
perature until germination. GC-MS non-targeted analysis 
and LC-MS phenyl–hexyl analysis were done at the Prot-
eomics and Metabolomics Facility at Colorado State Uni-
versity. Details of chemical analysis, raw mass spectrometry 
data processing, metabolite annotation, and normalization 
were described in Supplemental Methods. The normalized 
metabolomics data were used for network analysis with the 
WGCNA package (Zhang and Horvath, 2005) following the 
tutorial at https:// horva th. genet ics. ucla. edu/ html/ Coexp ressi 
onNet work/ Rpack ages/ WGCNA/ Tutor ials/ Femal eLiver- 
02- netwo rkCon str- man.R. Module identification included 
the following steps: (i) Correlation network adjacency was 
calculated using the soft thresholding power 4, which was 
selected based on the scale independence chart as described 
in the WGCNA tutorial; (ii) To minimize effects of noise and 
spurious associations, we transformed the adjacency matrix 
into Topological Overlap Matrix (TOM), and calculated the 
corresponding dissimilarity (1-TOM); (iii) We then used hier-
archical clustering to produce a hierarchical clustering tree 
of metabolite features based on TOM dissimilarity matrix 
with method = "average"; (iv) Modules were identified using 
the cutreeDynamic function with the following parameters: 
method = "hybrid", distM = dissTOM, deepSplit = 2, pamRe-
spectsDendro = FALSE, minClusterSize = 20.

Analysis of phenotypic traits, transcriptomic, 
and metabolic features

Phenotypic traits, transcriptomic and metabolic features 
were analyzed following a standard linear mixed model of an 
augmented design accounting for effects of check genotypes 
and blocks (Campbell et al. 2021a). For metabolites analy-
sis, batch effect was also included in the model to account 
for batch variation. All statistical models were described in 
Supplemental Methods and fitted using the sommer package 
(Covarrubias-Pazaran 2016).

Single‑environment prediction

The additive genomic relationship matrix was calculated 
with the A.mat function implemented in the rrBLUP pack-
age (Endelman 2011), and relationship matrices for tran-
scripts (TRM) and metabolites (MRM) were calculated with 
the following equations:

where NT and NM denoted the number of transcript and 
metabolite features, respectively, WT and WM are the feature 
matrices of transcripts and metabolites, and WT

T and WM
T 

are transpose of feature matrices.
GBLUP, Transcriptomic BLUP (T), metabolomic BLUP 

(M), G + T, G + M, and G + T + M models were fitted with 
the BGLR package (Pérez & De Los Campos, 2014). The 
equations used to implement G + T, G + M and G + T + M 
models are:

where y is a vector of phenotypes, X is a design matrix relat-
ing the fixed effects to each genotype, b is a vector of fixed 
effects, α, β and γ are random effects of genome, transcrip-
tome and metabolome, respectively; G, T, and M are design 
matrices allocating records to those random effects; ε is ran-
dom residual effect.

In the Diversity panel, transcriptomics and metabolomics 
data were collected on the same plots as the phenotypic data 
and therefore non-genetic (i.e., microenvironmental) factors 
that affected both omics features and phenotypic traits may 

(1)TRM =
1

NT

WTW
T

T
,

(2)MRM =
1

NM

WMW
T

M
,

(3)y = Xb + G� + T� + �,

(4)y = Xb + G� +M� + �,

(5)y = Xb + G� + T� +M� + �,

https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/FemaleLiver-02-networkConstr-man.R
https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/FemaleLiver-02-networkConstr-man.R
https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/FemaleLiver-02-networkConstr-man.R
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induce non-genetic correlations among traits. Therefore, we 

estimated prediction accuracy as côrg

(

√

ĥ2
û

)

 described by 

Runcie and Cheng (2019), and used a 50:50 training/testing 
split of the data to ensure that côrg could be estimated accu-
rately in the testing partition. This cross-validation proce-
dure was repeated for 50 times with different random parti-
tions. To determine whether there was a significant 
difference in prediction accuracy between each omics model 
and the GBLUP model, we performed the Wilcoxon signed-
rank test based on prediction accuracies across the 50 cross-
validation runs for each pair of models. The Wilcoxon 
signed-rank test was also applied to multi-environment pre-
diction and prediction of distantly related individuals in this 
study.

Multi‑environment prediction

The metabolomics data were also collected on the same plots 
as the phenotypic data for the Elite panel, which would bias 
prediction accuracy if directly using metabolites to predict 
target phenotypes from the same environment. Therefore, 
when predicting target phenotypes from one environment, 
we used metabolites from other two environments to make 
the metabolomic relationship matrix. For each trait, we fit-
ted six multi-trait mixed models on G, M and G + M kernels 
with different genetic and residual covariance structures. A 
standard multi-trait linear mixed model was used, and the 
equation for the case of genomic SNPs is:

where y = (y1’, y2’, y3’)’, g = (g1’, g2’, g3’)’, ε = (ε1’, ε2’, ε3’)’. 
y1, y2, and y3 are the column vectors of phenotypic data in 
each environment.  g1,  g2, and  g3 are the column vectors of 
random genetic effects in each environment. ε1, ε2, and ε3 
are the column vectors of random error terms associated 
with each environment. X and Z are design matrices relat-
ing the fixed and random effects to each genotype. Vectors 
containing the random effects in Eq. (6) are assumed to fol-
low a multivariate normal distribution, centered at zero, and 
with covariance structure Cov(g, g’) = G0 ⊗ K, Cov(ε, ε’) = I 
⊗ R0, and Cov(g, ε’) = 0, where K is the additive genomic 
relationship matrix, I is an identity matrix, ⊗ is the Kro-
necker product, G0 is a 3 × 3 genetic covariance matrix, R0 
is a 3 × 3 residual covariance for the three locations. There 
are various covariance structures for R0 or G0 (Burgueño 
et al. 2012). In this study, six multi-trait models on three 
different kernels/combinations (G, M, G + M) with various 
genetic and residual covariance structure were used (codes 
and covariance structures of the six multi-trait mixed models 
were described in Table S3).

We applied a single-environment cross-validation method 
originally designed for genomic prediction described by 

(6)y = Xb + Zg + �,

Mathew et al. (2018) and extended it to multi-kernel omic 
prediction (illustrated in Fig. S1). To predict a phenotype 
in the first environment, we masked 20% of lines for cross-
validation and used metabolites from the other two environ-
ments to construct the metabolomic relationship matrix. We 
then used multi-trait models treating phenotypes from all 
three environments as separate traits for model training but 
using only the phenotypic data of the masked lines from the 
first environment as the testing data. We further estimated 
prediction accuracy of the first environment as r(ŷ, y)∕

√

h2 
(Riedelsheimer et al. 2012), where r(ŷ,y) is the Pearson cor-
relation between the observed (y) and predicted ( ̂y ) pheno-
typic values and  h2 is the heritability of the target trait. To 
predict the phenotype in the second and third environments, 
we masked 20% of lines (the same set of lines as those in 
the first environment) from the second and third environ-
ments, respectively, and calculated their prediction accu-
racies following the same procedure as that applied to the 
first environment. Finally, we averaged the three prediction 
accuracies across environments to represent the prediction 
accuracy of a single run. This procedure was repeated for 50 
times with different random partitions.

Prediction of distantly related individuals

Seed fatty acid concentrations were used as target traits for 
predicting distantly related individuals, which included two 
steps: likely causal loci prioritization in the Diversity panel 
(training population) and multiple-kernel prediction in the 
Elite panel (test population).

We first performed the WGCNA on all metabolite features 
in the Diversity panel (training population), and identified 
twenty-six network modules. Based on the metabolites anno-
tation, we performed Fisher's exact test to identify a subset 
of network modules enriched with lipids and lipid-like mole-
cules. We then performed hierarchical clustering (using cor-
relation based dissimilarity matrix with method = "average") 
and GWAS on eigenvectors of the twenty-six network mod-
ules and PC1 of fatty acids. GWAS was performed based on 
the linear mixed model (Yu et al. 2006) implemented in the 
GWAS function of the rrBLUP package (Endelman 2011) 
with the following parameters: K = GRM (additive genomic 
relationship matrix), n.PC = 2, min.MAF = 0.02, n.core = 4 
(Campbell et al. 2021a). Based on these analyses, we found 
that a 'darkred' module enriched with lipids and lipid-like 
molecules, clustered together with PC1 of fatty acids, and its 
eigenvector had a QTL co-located with the major-effect QTL 
of fatty acids on chromosome 6A. We finally prioritized 140 
markers including significant markers and the markers in 
LD with them based on the GWAS peak on chromosome 
6A identified from the 'darkred' module. A LD threshold of 
r2 = 0.1 was used as it is frequently recommended for SNP 
pruning (Kawakami et al. 2014).
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The prioritized markers and all rest markers were used 
to construct two genomic relationship kernels in the Elite 
panel (test population) and perform a multiple-kernel predic-
tion. The two genomic relationship matrices were calculated 
with the A.mat function implemented in the rrBLUP pack-
age (Endelman 2011). Genomic predictions with GBLUP 
and BayesB models were used as references to compare with 
the two-kernel linear model. The fivefold cross-validation 
was used to estimate prediction accuracies for all models 
and the prediction accuracy was estimated as r(ŷ, y)∕

√

h2 
(Riedelsheimer et al. 2012). This cross-validation procedure 
was repeated for 50 times with different random partitions.

Results

After filtering out lines with low-quality genetic markers, 
the Diversity and Elite panels consisted of 368 and 232 lines 
(Table S2), respectively, with 32 lines in common. A recon-
structed phylogenetic tree revealed that most of clusters were 
primarily comprised of either the Diversity or the Elite panel 
members, although a couple of clusters had approximately 
equal representation from both sets (Fig. 1). This is consist-
ent with our prior knowledge about different origins of the 
two panels (Carlson et al., 2019; Campbell et al., 2021b).

Single‑environment prediction in the Diversity 
panel

Using GBLUP (G) as a baseline, there were 5, 10, 11, 
17, and 17 traits out of the 17 total traits with improved 

prediction accuracy from transcriptomic BLUP (T), metab-
olomic BLUP (M), G + T, G + M, and G + T + M models, 
respectively (Fig. 2, Table S4). Percent change in prediction 
accuracy over GBLUP ranged from 0.1% (Days to Heading, 
G + T model) to 70.3% (C18:0, G + M model) with a median 
of 21.5%, and most of differences in prediction accuracy 
between omics models and GBLUP are statistically sig-
nificant. Because GBLUP does not allow for large-effect or 
zero-effect genetic markers, we also compared BayesB with 
the multi-omics models, and found BayesB showed similar 
results to GBLUP (Fig. S2).

To evaluate whether transcriptomic and metabolomic 
features equally contribute to improved prediction accuracy 
or if one is more important than the other, we compared 
multi-omics prediction models with T and M kernels added 
in different orders. By adding kernels in their order along 
the central dogma of molecular biology, median prediction 
accuracy changes from G to G + T models and from G + T 
to G + T + M models across all traits ranged from − 11.6 to 
35.8% (median = 3.2%) and 6.5–55.6% (median = 16.3%), 
respectively (Fig. S3). In contrast, when adding the M 
kernel first (G + M model) then followed by the T kernel 
(G + T + M model), percent changes in prediction accuracy 
ranged from 2.5 to 67.3% (median = 41.7%) and − 3.3 to 
3.5% (median = − 0.03%), respectively (Fig. S4). These 
results indicated that seed metabolites generally contributed 
more than transcripts to improving prediction accuracy of 
both agronomic and seed nutritional traits when combined 
with SNPs.

In addition to playing important roles in improving 
prediction accuracy when combined with other kernels, 
metabolites alone from mature seeds (M model) greatly 
outperformed SNPs (G model) and transcripts (T model) 
in predicting fatty acids (except C16:1, Fig. 2). To under-
stand why metabolites are better predictors for fatty acid 
traits, we used the Weighted Gene Co-expression Network 
Analysis (WGCNA, Zhang and Horvath 2005) that accom-
modated both annotated and unannotated compounds and 
used metabolites annotations (Table S5) to elucidate their 
biological functions. The WGCNA was designed to con-
struct gene/metabolite co-expression networks, and a co-
expression module (network module) may reflect a true 
biological pathway (Langfelder and Horvath 2008). We 
identified twenty-six network modules and found that eight 
of them were enriched with lipids and lipid-like molecules 
(Table S6), which included 33.0% of total identified seed 
metabolite compounds.

Multi‑environment prediction in the Elite panel

Beyond single-environment prediction, omics data might 
also have merit in predicting multi-environment trials, 
which has not yet been investigated to our knowledge. 

Fig. 1  Neighbor-joining tree of 568 oat lines in the Diversity and 
Elite panels. Different panels are shown in different colors (darkblue, 
Diversity panel; red, Elite panel, light blue, lines in common)
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Here we used SNPs and metabolites for analyzing the 
multi-environment trials in the Elite panel, because tran-
script profiling from a single developmental time point 
showed limited value for improving prediction accuracy 
in addition to being very labor-intensive. We focused on 
prediction of lines that have been evaluated in some but 
not in target environments (termed CV2 by Burgueño 
et al. 2012). To this aim, we applied a single-environment 
cross-validation method (Mathew et al. 2018) (Fig. S1). 
Briefly, to predict a phenotype in the first environment, 
we masked 20% of lines for cross-validation and used 
metabolites from the other two environments to construct 
metabolomic relationship matrices to minimize the influ-
ence of non-genetic effects on prediction accuracy. We 
then used multi-trait models treating phenotypes from all 
three environments as separate traits for model training but 
using only the phenotype data of the masked lines from 
the first environment as the testing data. This procedure 
was repeated for the second and third environments and 
prediction accuracies were averaged across the three envi-
ronments for each run.

Multi-environment predictions were performed using six 
multi-trait models (Table S3) on three different kernels/com-
binations (G, M, G + M) with various genetic and residual 
covariance structures (Fig. 3 showed prediction accura-
cies of D-D, D-UN, UN-UN and FA-UN models; Fig. S5 
showed prediction accuracies of UN-D and FA-D models; 
the uppercase letters before and after the hyphen represent 
genetic and residual covariance structures; D = diagonal, 
UN = unstructured, FA = factor-analytic). The diagonal 
heterogeneous covariance structure (D-D) corresponds to a 
single-environment model without borrowing information 
from other environments. The question that we explored was 
whether multi-omics models (M and G + M) could improve 
prediction accuracy compared to corresponding multi-trait 
models based on SNPs alone (G model). To answer this 
question, within each of the five multi-trait models (the D-D 
model was excluded), we compared percent change in pre-
diction accuracy of M and G + M models relative to the G 
model. We found the M model outperformed the G model 
for all seed fatty acid traits except C16:1 and C18:3, with an 
increase in prediction accuracy ranging from 0.1 to 15.9%. 

Fig. 2  Distribution of prediction accuracy of the 17 phenotypic traits 
in the Diversity panel across 50 re-sampling runs. For each trait, 
boxplots with different colors represent prediction models. Medians 
of percent change in prediction accuracy of omics models relative 
to GBLUP are indicated below each box in blue if positive and in 
red if negative. The Wilcoxon Signed Rank was applied to test dif-

ference in prediction accuracy between each omics model and the 
GBLUP model, and significance levels are indicated above each box. 
*** = significant at P < 0.001, ** = significant at P < 0.01, * = signifi-
cant at P < 0.05, NS = not significant. G = genomic BLUP, T = tran-
scriptomic BLUP, M = metabolomic BLUP
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However, the G + M model outperformed the G model for 
all traits except days to heading, with an increase in predic-
tion accuracy over the G model ranging from 0.1 to 13.9%. 
For four fatty acids traits (C16:0, C18:1, C18:2, and total 
fatty acids), there was a significant difference in prediction 
accuracy between the multi-trait models (the D-D model 
was not included) and the corresponding GBLUP model at 
the significance level of 0.01 for both M and G + M kernels. 
These results confirmed the value of using multi-omics data 
in the multi-environment prediction.

In genomic prediction, Burgueño et  al. (2012) had 
shown that different genetic and residual covariance struc-
tures in the multi-trait models boosted predictive power in 
across-environment prediction differently. Mathew et al. 
(2018) further showed that different residual covariance 
structures impacted on genomic prediction ability in multi-
environment trials and therefore residual covariances 

across multiple environments couldn’t be neglected. To 
understand the impact of different genetic and residual 
covariance structures on prediction accuracy in the con-
text of multi-omics prediction, we compared the perfor-
mance of different multi-trait models using the prediction 
accuracy from GBLUP in the single-environment model 
(D-D) as a baseline. We found that all multi-trait mod-
els outperformed their counterpart single-environment 
models (Fig. 3, Figs. S6-8). The multi-trait models gener-
ally performed better when modeling the genetic covari-
ance as unstructured (UN) or as factor-analytic (FA) than 
modeling genetic covariance as a diagonal structure (D). 
The highest prediction accuracy was achieved by either 
UN-D (UN and D represent genetic and residual covari-
ance structures, respectively) or UN-UN models, although 
FA-D and FA-UN models provided very similar results.

Fig. 3  Distribution of prediction accuracy of the 15 phenotypic 
traits in the Elite panel across 50 re-sampling runs estimated by 
multi-trait models. For each trait, boxplots with different colors rep-
resent models. Medians of percent change in prediction accuracy of 
M and G + M models relative to the G model are indicated below 
each box in blue if positive and in red if negative. For each model, 
the uppercase letters before and after the hyphen represent genetic 

and residual covariance structures: D = diagonal, UN = unstructured, 
FA = factor-analytic. The Wilcoxon Signed Rank was applied to test 
difference in prediction accuracy between each omics model and the 
GBLUP model, and significance levels are indicated above each box. 
*** = significant at P < 0.001, ** = significant at P < 0.01, * = signifi-
cant at P < 0.05, NS = not significant
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Using multi‑omics data to improve genomic 
prediction in distantly related populations

Although multi-omics data showed superiority over SNPs 
to predict phenotypes in both single and multi-environment 
trials, currently transcript and metabolite profiling is more 
expensive than SNP genotyping, which would limit their 
applications in plant breeding. Here we hypothesized that 
omics data from well characterized populations can be used 
to prioritize likely causal loci and improve performance of 
genomic prediction models in distantly related populations. 
Seed fatty acid concentrations were used as target traits to 
test the hypothesis because their genetic architectures have 
been well characterized (Carlson et al. 2019; Campbell 
et al. 2021a) and lipid biosynthetic pathways are known to 
be highly conserved in higher plants (de Abreu et al. 2018).

To explore this scientific question, we first attempted to 
prioritize likely causal loci from the Diversity panel (training 
population) based on the eight network modules enriched 
with lipids and lipid-like molecules (Table S6). Among 
the eight network modules, only one ('darkred') strongly 
correlated with fatty acids (Fig. S9). We then performed 

hierarchical clustering and GWAS on eigenvectors of all the 
26 network modules and PC1 of fatty acids. The eigenvec-
tor of the 'darkred' module was clustered together with PC1 
of fatty acids (Fig. S10) and had significant GWAS hits on 
chromosome 6A (Fig. S11), which co-located with the fatty 
acids major-effect QTL (QTL-6A, Fig. S12). However, the 
QTL-6A was not detected from other network modules. We 
further prioritized 140 markers including significant mark-
ers and the markers in LD with them based on the 'darkred' 
module GWAS hits on chromosome 6A.

The primary use of locus prioritization is to split markers 
in the test population into two sets for a multi-kernel model 
prediction, in which the two genomic relationship kernels 
were constructed from the two marker sets. We termed 
our method multi-kernel network-based prediction (MK-
Network) and found it improved prediction accuracy over 
GBLUP and BayesB for all fatty acid traits except C14:0 and 
C18:3 (Fig. 4) in the Elite panel (test population). For the 
eight fatty acids traits with improved prediction accuracy in 
the MK-Network model, the percent change of mean predic-
tion accuracy over GBLUP across 50 cross-validation runs 
ranged from 4.0% (C16:1) to 32.0% (C18:1) with a mean of 

Fig. 4  Prediction accuracy of the 10 fatty acid traits in the Elite panel 
estimated by GBLUP, BayesB and two-kernel BLUP models across 
50 re-sampling runs. For each trait, barplots with different colors 
represent models. Means of percent change in prediction accuracy 
of all other models relative to GBLUP are indicated above each bar 
(in blue if positive, in red if negative, and in black if zero). MK-

Network = network-based multiple-kernel prediction. The Wilcoxon 
Signed Rank was applied to test difference in prediction accuracy 
between other models and the GBLUP model, and significance levels 
are indicated on each bar. *** = significant at P < 0.001, ** = signifi-
cant at P < 0.01, * = significant at P < 0.05, NS = not significant
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14.5%. For five of the eight fatty acids traits, there was sig-
nificant difference in prediction accuracy between the MK-
Network model and GBLUP model at the significance level 
of 0.01. All the eight fatty acids traits showed clear peaks 
for GWAS hits at the QTL-6A, although only five of them 
were significant at FDR < 0.05 (Fig. S12). In contrast, C14:0 
had significant GWAS hits on chromosomes 6D and 7A, and 
C18:3 showed a complex genetic architecture with several 
visible GWAS peaks on several different chromosomes.

Discussion

Roles of transcripts and metabolites 
in the single‑environment prediction

In the single-environment prediction, we found that tran-
scripts showed limited value for improving prediction 
accuracy either by themselves alone or by combining with 
SNPs. Other researchers (Guo et al. 2016; Westhues et al. 
2017; Xu et al. 2017) also reported that prediction abilities 
of transcripts were either lower than or close to GBLUP for 
some traits in their studies and were affected by many other 
factors. The poor predictive performance of transcripts in 
existing studies might be explained because they were col-
lected from a single developmental time point and subject to 
dynamic changes in later unsampled developmental stages or 
because transcripts and SNPs tend to capture similar genetic 
signals for predicted traits (Guo et al. 2016).

Metabolite abundance from seedling tissues (Rie-
delsheimer et al. 2012; Schrag et al. 2018; Westhues et al. 
2017), flag leaves (Zhao et al. 2015), and mature seeds (Guo 
et al. 2016, Xu et al. 2017) were reported not superior to 
SNPs for predicting hybrid performance and agronomic 
traits. In this study, we found that metabolites alone (M 
model) from mature seeds showed mixed results for predict-
ing agronomic traits (Fig. 2), and only significantly better 
over GBLUP for two traits (Days to Heading and Hundred 
Hull Weight). One reason for the relatively low performance 
of metabolite compounds in predicting agronomic and other 
complex traits across studies could be that development of 
the agronomic traits and accumulation of the compounds 
analyzed in existing studies occurred either at different times 
or in different tissues and therefore the target traits and pre-
dictor compounds are quite distant from each other in terms 
of biological pathways.

However, we found that seed metabolites greatly outper-
formed SNPs in predicting fatty acids in our study (Fig. 2). 
In contrast to agronomic and other complex traits, these 
compounds and fatty acids were synthesized in the same 
tissue, a large proportion of them directly or indirectly 
connected with fatty acids through biochemical pathways 
(Tables S4-5); and different pathways relevant to lipids were 

likely influenced by overlapping gene sets. Therefore, they 
should be able to capture more genetic covariance (includ-
ing both additive and non-additive) with fatty acids than 
SNPs fitted in an additive model. This hypothesis was par-
tially supported by our results that combining G model and 
M model (G + M model) significantly improved prediction 
accuracies than using the G model alone for all the 17 traits 
(Fig. 2, Table S7) and by findings of Guo et al. (2016) that 
adding metabolites to saturated SNP densities still led to 
significant increases in predictive abilities. However, the 
increase of prediction accuracy with the omics models can-
not completely rule out possibilities of non-genetic contribu-
tions, for example, cellular microenvironment that affected 
both target traits of fatty acids and predictor compounds. To 
provide a better understanding on how the omics models 
improve prediction accuracy, further research is needed to 
dissect contributions to the improved prediction accuracy 
into additive genetic, non-additive genetic and non-genetic 
components.

Application of omics data in the multi‑environment 
prediction

In the multi-environment prediction, we observed that for 
predicting agronomic traits, the M model performed simi-
larly to the G model (i.e., M ~ G, Fig. 3), however, the M 
model outperformed G model for predicting fatty acids traits 
(i.e. M > G). This pattern is very similar to that observed 
in the single-environment prediction, and therefore could 
be interpreted similarly. Both analyses indicated that when 
predicting traits very distantly connected or unconnected 
through biological pathways, metabolites functioned simi-
larly to DNA-based genetic markers (i.e., we need to trace 
back to the DNA along the central dogma); however, when 
predicting relevant traits that directly/indirectly connected 
through biological pathways, metabolites could capture 
more genetic covariance with the target traits than DNA-
based genetic markers, because they shared more similarities 
in temporal and spatial expression.

In addition, we observed that all multi-trait models out-
performed their counterpart single-environment models 
(Fig. 3, Figs. S6-8), and the multi-trait models generally 
performed better when modeling the genetic covariance as 
unstructured (UN) or as factor-analytic (FA) than modeling 
genetic covariance as a diagonal structure (D). This indi-
cated that the genetic covariance between environments 
played an important role in the multi-omics prediction mod-
els. These findings agree with recent genomic prediction 
studies (Malosetti et al. 2016; Mathew et al. 2018; Mon-
tesinos-López et al. 2016) that UN covariance structure 
improved prediction accuracy compared to the models with 
diagonal homogeneous or heterogeneous covariances. Over-
all, we concluded that considering genetic and non-genetic 
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covariances is useful to improve prediction accuracy of 
multi-environment models using multi-omics data.

The genetic basis of predicting distantly related 
individuals and advantages of the two‑kernel linear 
model

In the prediction of distantly related individuals, the uni-
versal QTL of fatty acids (QTL-6A, Figs. S12-13) and simi-
lar LD relationships (Fig. S14) with the surrounding loci 
between the Diversity and Elite panels promoted the success 
of our likely causal loci prioritization. The network-based 
prioritization strategy takes advantages of pleiotropy, in 
which one or a few genes influence both target traits and 
other metabolites from related network modules. In the 
'darkred' module, 23 of 32 metabolites showed clear peaks 
at the QTL-6A, although only five of them were significant 
at FDR < 0.05 (Fig. S15). This indicated that QTL-6A was 
likely a causal locus and influenced both fatty acids and the 
'darkred' module. The relationships between fatty acids and 
the 'darkred' module are expected to be conserved between 
populations. However, we were unable to test this because 
there is currently no robust method to map all untargeted 
metabolites from one panel to another and quantify them 
accurately.

Most genomic prediction methods assume that each vari-
ant is equally likely to affect the trait (MacLeod et al. 2016). 
There are certain loci that explain more phenotypic vari-
ance and they should be placed in different kernels than loci 
that explain little or no variance. However, the other ker-
nel is still needed because we may unintentionally exclude 
important loci based on prior biological knowledge alone, 
for example, a prior GWAS might not identify all possi-
ble causal loci. There are many loci that have small effects, 
through whatever pathway, whether it is through trans effects 
as hypothesized in the omnigenic model (Liu et al. 2019) or 
through much more indirect effects like competition for pho-
tosynthates or impact on fitness (Price et al. 2018). Li et al. 
(2018) found that excluding those small-effect loci could not 
further improve prediction accuracy compared to GBLUP 
with all SNPs. Therefore, a two-kernel linear model that 
accommodates both likely casual loci and loci with minimal 
to no effect should be used to improve prediction accuracy 
for any traits with prior knowledge of genetic architecture.

Author contribution statement

JJ, MAG, and MES designed the research. HH analyzed the 
data. HH, MTC, MAG, and JJ wrote the manuscript. DER, 
GC, OAH and MES advised HH on data analysis. HH, THY, 
XZ, MC, LC, KPS, and JT performed experiments. CB and 

LY performed metabolite analysis. All co-authors were 
involved in editing the manuscript.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00122- 021- 03946-4.

Acknowledgements We thank Joshua Wood and Robin Buell for help-
ing with oat seed RNA extraction; David Benscher, Amy Tamara Fox 
and Nicholas Kaczmar for help with planting and harvesting field tri-
als and sample collection; Yujie Meng for phenotype evaluation; Jing 
Wu and Peter Schweitzer for library preparation and RNA sequencing.

Funding Funding for this research was provided by USDA-NIFA-AFRI 
2017–67007-26502. Mention of a trademark or proprietary product 
does not constitute a guarantee or warranty of the product by the USDA 
and does not imply its approval to the exclusion of other products that 
may also be suitable. The USDA is an equal opportunity provider and 
employer.

Data availability All the phenotypic data and omics data are available 
on CyVerse Data Commons (Hu 2021). Scripts for running all the 
multi-omics prediction analyses are available at https:// github. com/ 
hh622/ Oat_ Multi- omics_ Predi ction.

Declarations 

Conflict of interest The authors have no conflict of interest to declare.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Alseekh S, Fernie AR (2018) Metabolomics 20 years on: what have 
we learned and what hurdles remain? Plant J 94:933–942. https:// 
doi. org/ 10. 1111/ tpj. 13950

Bekele WA, Wight CP, Chao S et al (2018) Haplotype-based geno-
typing-by-sequencing in oat genome research. Plant Biotechnol J 
16:1452–1463. https:// doi. org/ 10. 1111/ pbi. 12888

Burgueño J, de los Campos G, Weigel K, Crossa J (2012) Genomic 
prediction of breeding values when modeling genotype × envi-
ronment interaction using pedigree and dense molecular mark-
ers. Crop Sci 52: 707–719. https:// doi. org/ 10. 2135/ crops ci2011. 
06. 0299

Campbell MT, Hu H, Yeats TH, et al (2021a) Translating insights from 
the seed metabolome into improved prediction for lipid-composi-
tion traits in oat (Avena sativa L.). Genetics 217:. https:// doi. org/ 
10. 1093/ genet ics/ iyaa0 43

Campbell MT, Hu H, Yeats TH et al (2021b) Improving genomic 
prediction for seed quality traits in oat (Avena sativa L.) using 

https://doi.org/10.1007/s00122-021-03946-4
https://github.com/hh622/Oat_Multi-omics_Prediction
https://github.com/hh622/Oat_Multi-omics_Prediction
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1111/tpj.13950
https://doi.org/10.1111/tpj.13950
https://doi.org/10.1111/pbi.12888
https://doi.org/10.2135/cropsci2011.06.0299
https://doi.org/10.2135/cropsci2011.06.0299
https://doi.org/10.1093/genetics/iyaa043
https://doi.org/10.1093/genetics/iyaa043


4053Theoretical and Applied Genetics (2021) 134:4043–4054 

1 3

trait-specific relationship matrices. Front Genet 12:1–12. https:// 
doi. org/ 10. 3389/ fgene. 2021. 643733

Carlson MO, Montilla-Bascon G, Hoekenga OA et al (2019) Multivari-
ate genome-wide association analyses reveal the genetic basis of 
seed fatty acid composition in oat (Avena sativa L.). G3 Genes 
Genomes Genet 9:2963–2975. https:// doi. org/ 10. 1534/ g3. 119. 
400228

Chan AW, Hamblin MT, Jannink JL (2016) Evaluating imputation 
algorithms for low-depth genotyping-by-sequencing (GBS) data. 
PLoS ONE 11:1–17. https:// doi. org/ 10. 1371/ journ al. pone. 01607 
33

Covarrubias-Pazaran G (2016) Genome-Assisted prediction of quan-
titative traits using the r package sommer. PLoS ONE 11:1–15. 
https:// doi. org/ 10. 1371/ journ al. pone. 01567 44

de Abreu e Lima F, Li K, Wen W et al (2018) Unraveling lipid metabo-
lism in maize with time-resolved multi-omics data. Plant J 93: 
1102–1115. https:// doi. org/ 10. 1111/ tpj. 13833

Endelman JB (2011) Ridge regression and other kernels for genomic 
selection with R package rrBLUP. Plant Genome 4:250–255. 
https:// doi. org/ 10. 3835/ plant genom e2011. 08. 0024

Guo Z, Magwire MM, Basten CJ et al (2016) Evaluation of the utility 
of gene expression and metabolic information for genomic predic-
tion in maize. Theor Appl Genet 129:2413–2427. https:// doi. org/ 
10. 1007/ s00122- 016- 2780-5

Hu H (2021) Multi-omics prediction of oat agronomic and seed nutri-
tional traits across environments and in distantly related popula-
tions—Omics Data. CyVerse Data Commons. https:// doi. org/ 10. 
25739/ 8p1e- 0931

Hu H, Gutierrez-Gonzalez JJ, Liu X et al (2020) Heritable temporal 
gene expression patterns correlate with metabolomic seed content 
in developing hexaploid oat seed. Plant Biotechnol J 18:1211–
1222. https:// doi. org/ 10. 1111/ pbi. 13286

IMARC Group (2019) Oats market: global industry trends, share, size, 
growth, opportunity and forecast 2019–2024. http:// www. repor 
tlink er. com/ p0471 5198- summa ry/ view- report. html

Kawakami T, Backström N, Burri R et al (2014) Estimation of linkage 
disequilibrium and interspecific gene flow in Ficedula flycatch-
ers by a newly developed 50k single-nucleotide polymorphism 
array. Mol Ecol Resour 14:1248–1260. https:// doi. org/ 10. 1111/ 
1755- 0998. 12270

Langfelder P, Horvath S (2008) WGCNA: an R package for weighted 
correlation network analysis. BMC Bioinform. https:// doi. org/ 10. 
1186/ 1471- 2105-9- 559

Li B, Zhang N, Wang YG et al (2018) Genomic prediction of breeding 
values using a subset of SNPs identified by three machine learn-
ing methods. Front Genet 9:1–20. https:// doi. org/ 10. 3389/ fgene. 
2018. 00237

Liu X, Li YI, Pritchard JK (2019) Trans effects on gene expression can 
drive omnigenic inheritance. Cell 177:1022-1034.e6. https:// doi. 
org/ 10. 1016/j. cell. 2019. 04. 014

Lorenz AJ, Smith KP (2015) Adding genetically distant individuals 
to training populations reduces genomic prediction accuracy in 
Barley. Crop Sci 55(6):2657–2667. https:// doi. org/ 10. 2135/ crops 
ci2014. 12. 0827

MacLeod IM, Bowman PJ, Vander Jagt CJ et al (2016) Exploiting bio-
logical priors and sequence variants enhances QTL discovery and 
genomic prediction of complex traits. BMC Genomics 17:1–21. 
https:// doi. org/ 10. 1186/ s12864- 016- 2443-6

Malosetti M, Bustos-Korts D, Boer MP, Van Eeuwijk FA (2016) Pre-
dicting responses in multiple environments: issues in relation to 
genotype × Environment interactions. Crop Sci 56:2210–2222. 
https:// doi. org/ 10. 2135/ crops ci2015. 05. 0311

Mathew B, Léon J, Sillanpää MJ (2018) Impact of residual covariance 
structures on genomic prediction ability in multienvironment tri-
als. PLoS ONE 13:1–11. https:// doi. org/ 10. 1371/ journ al. pone. 
02011 81

Meuwissen TH (2009) Accuracy of breeding values of “unrelated” 
individuals predicted by dense SNP genotyping. Genet Sel Evol 
41(1):1–9. https:// doi. org/ 10. 1186/ 1297- 9686- 41- 35

Moghaddar N, Khansefid M, Van Der Werf JHJ, Bolormaa S, Dui-
jvesteijn N, Clark SA, Swan AA, Daetwyler HD, MacLeod IM 
(2019) Genomic prediction based on selected variants from 
imputed whole-genome sequence data in Australian sheep popu-
lations. Genet Sel Evol 51(1):1–14. https:// doi. org/ 10. 1186/ 
s12711- 019- 0514-2

Moll P, Ante M, Seitz A, Reda T (2014) QuantSeq 3′ mRNA sequenc-
ing for RNA quantification. Nat Methods. https:// doi. org/ 10. 1038/ 
nmeth.f. 376

Montesinos-López OA, Montesinos-López A, Crossa J et al (2016) A 
genomic bayesian multi-trait and multi-environment model. G3 
Genes Genomes Genet 6:2725–2774. https:// doi. org/ 10. 1534/ g3. 
116. 032359

Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics 
and evolution in R language. Bioinformatics 20:289–290. https:// 
doi. org/ 10. 1093/ bioin forma tics/ btg412

PepsiCo (2020) Avena sativa—OT3098 v1. https:// wheat. pw. usda. gov/ 
GG3/ grain genes_ downl oads/ oat- ot3098- pepsi co

Pérez P, De Los CG (2014) Genome-wide regression and prediction 
with the BGLR statistical package. Genetics 198:483–495. https:// 
doi. org/ 10. 1534/ genet ics. 114. 164442

Price N, Moyers BT, Lopez L et al (2018) Combining population 
genomics and fitness QTLs to identify the genetics of local 
adaptation in Arabidopsis thaliana. Proc Natl Acad Sci USA 
115:5028–5033. https:// doi. org/ 10. 1073/ pnas. 17199 98115

Riedelsheimer C, Czedik-Eysenberg A, Grieder C et al (2012) Genomic 
and metabolic prediction of complex heterotic traits in hybrid 
maize. Nat Genet 44:217–220. https:// doi. org/ 10. 1038/ ng. 1033

Runcie D, Cheng H (2019) Pitfalls and remedies for cross validation 
with multi-trait genomic prediction methods. G3 Genes Genomes 
Genet 9:3727–3741. https:// doi. org/ 10. 1534/ g3. 119. 400598

Schrag TA, Westhues M, Schipprack W et al (2018) Beyond genomic 
prediction: combining different types of omics data can improve 
prediction of hybrid performance in maize. Genetics 208:1373–
1385. https:// doi. org/ 10. 1534/ genet ics. 117. 300374

USDA (2019) Grain: world markets and trade competitive pricing sug-
gests rebound in EU wheat exports

Wang S, Wei J, Li R et al (2019) Identification of optimal prediction 
models using multi-omic data for selecting hybrid rice. Heredity 
(Edinb) 123:395–406. https:// doi. org/ 10. 1038/ s41437- 019- 0210-6

Westhues M, Schrag TA, Heuer C et al (2017) Omics-based hybrid 
prediction in maize. Theor Appl Genet 130:1927–1939. https:// 
doi. org/ 10. 1007/ s00122- 017- 2934-0

Xu Y, Xu C, Xu S (2017) Prediction and association mapping of agro-
nomic traits in maize using multiple omic data. Heredity (Edinb) 
119:174–184. https:// doi. org/ 10. 1038/ hdy. 2017. 27

Xu Y, Zhao Y, Wang X et al (2021) Incorporation of parental phe-
notypic data into multi-omic models improves prediction of 
yield-related traits in hybrid rice. Plant Biotechnol J 19:261–272. 
https:// doi. org/ 10. 1111/ pbi. 13458

Ye S, Li J, Zhang Z (2020) Multi-omics-data-assisted genomic feature 
markers preselection improves the accuracy of genomic predic-
tion. J Anim Sci Biotechnol 11:1–12. https:// doi. org/ 10. 1186/ 
s40104- 020- 00515-5

Yu G (2020) Using ggtree to visualize data on tree-like structures. Curr 
Protoc Bioinform 69(1):1–18. https:// doi. org/ 10. 1002/ cpbi. 96

Yu J, Pressoir G, Briggs WH et al (2006) A unified mixed-model 
method for association mapping that accounts for multiple levels 
of relatedness. Nat Genet 38:203–208. https:// doi. org/ 10. 1038/ 
ng1702

Zhang B, Horvath S (2005) A general framework for weighted gene 
co-expression network analysis. Stat Appl Genet Mol Biol. https:// 
doi. org/ 10. 2202/ 1544- 6115. 1128

https://doi.org/10.3389/fgene.2021.643733
https://doi.org/10.3389/fgene.2021.643733
https://doi.org/10.1534/g3.119.400228
https://doi.org/10.1534/g3.119.400228
https://doi.org/10.1371/journal.pone.0160733
https://doi.org/10.1371/journal.pone.0160733
https://doi.org/10.1371/journal.pone.0156744
https://doi.org/10.1111/tpj.13833
https://doi.org/10.3835/plantgenome2011.08.0024
https://doi.org/10.1007/s00122-016-2780-5
https://doi.org/10.1007/s00122-016-2780-5
https://doi.org/10.25739/8p1e-0931
https://doi.org/10.25739/8p1e-0931
https://doi.org/10.1111/pbi.13286
http://www.reportlinker.com/p04715198-summary/view-report.html
http://www.reportlinker.com/p04715198-summary/view-report.html
https://doi.org/10.1111/1755-0998.12270
https://doi.org/10.1111/1755-0998.12270
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.3389/fgene.2018.00237
https://doi.org/10.3389/fgene.2018.00237
https://doi.org/10.1016/j.cell.2019.04.014
https://doi.org/10.1016/j.cell.2019.04.014
https://doi.org/10.2135/cropsci2014.12.0827
https://doi.org/10.2135/cropsci2014.12.0827
https://doi.org/10.1186/s12864-016-2443-6
https://doi.org/10.2135/cropsci2015.05.0311
https://doi.org/10.1371/journal.pone.0201181
https://doi.org/10.1371/journal.pone.0201181
https://doi.org/10.1186/1297-9686-41-35
https://doi.org/10.1186/s12711-019-0514-2
https://doi.org/10.1186/s12711-019-0514-2
https://doi.org/10.1038/nmeth.f.376
https://doi.org/10.1038/nmeth.f.376
https://doi.org/10.1534/g3.116.032359
https://doi.org/10.1534/g3.116.032359
https://doi.org/10.1093/bioinformatics/btg412
https://doi.org/10.1093/bioinformatics/btg412
https://wheat.pw.usda.gov/GG3/graingenes_downloads/oat-ot3098-pepsico
https://wheat.pw.usda.gov/GG3/graingenes_downloads/oat-ot3098-pepsico
https://doi.org/10.1534/genetics.114.164442
https://doi.org/10.1534/genetics.114.164442
https://doi.org/10.1073/pnas.1719998115
https://doi.org/10.1038/ng.1033
https://doi.org/10.1534/g3.119.400598
https://doi.org/10.1534/genetics.117.300374
https://doi.org/10.1038/s41437-019-0210-6
https://doi.org/10.1007/s00122-017-2934-0
https://doi.org/10.1007/s00122-017-2934-0
https://doi.org/10.1038/hdy.2017.27
https://doi.org/10.1111/pbi.13458
https://doi.org/10.1186/s40104-020-00515-5
https://doi.org/10.1186/s40104-020-00515-5
https://doi.org/10.1002/cpbi.96
https://doi.org/10.1038/ng1702
https://doi.org/10.1038/ng1702
https://doi.org/10.2202/1544-6115.1128
https://doi.org/10.2202/1544-6115.1128


4054 Theoretical and Applied Genetics (2021) 134:4043–4054

1 3

Zhao Y, Li Z, Liu G et al (2015) Genome-based establishment of a 
high-yielding heterotic pattern for hybrid wheat breeding. Proc 
Natl Acad Sci USA 112:15624–15629. https:// doi. org/ 10. 1073/ 
pnas. 15145 47112

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1073/pnas.1514547112
https://doi.org/10.1073/pnas.1514547112

	Multi-omics prediction of oat agronomic and seed nutritional traits across environments and in distantly related populations
	Abstract
	Key message 
	Abstract 

	Introduction
	Materials and methods
	The plant materials and experimental designs
	Phenotype evaluation and analysis
	Genotype analysis
	Transcript profiling
	Metabolite profiling and network analysis
	Analysis of phenotypic traits, transcriptomic, and metabolic features
	Single-environment prediction
	Multi-environment prediction
	Prediction of distantly related individuals

	Results
	Single-environment prediction in the Diversity panel
	Multi-environment prediction in the Elite panel
	Using multi-omics data to improve genomic prediction in distantly related populations

	Discussion
	Roles of transcripts and metabolites in the single-environment prediction
	Application of omics data in the multi-environment prediction
	The genetic basis of predicting distantly related individuals and advantages of the two-kernel linear model

	Author contribution statement
	Acknowledgements 
	References




